Abstract
Planning personalized travel itineraries for groups with diverse preferences is indeed challenging. This article proposes a novel group tour trip recommender model (GTTRM), which uses ant colony optimization (ACO) to optimize group satisfaction while minimizing conflicts between group members. Unlike existing models, the proposed GTTRM allows dynamic subgroup formation during the trip to handle conflicting preferences and provide tailored recommendations. Experimental results show that GTTRM significantly improves satisfaction levels for individual group members, outperforming state-of-the-art models in terms of both subgroup management and optimization efficiency.
Original language | English |
---|---|
Article number | e2589 |
Pages (from-to) | 1-377 |
Number of pages | 377 |
Journal | PeerJ Computer Science |
Volume | 11 |
DOIs | |
State | Published - 2025 |
Keywords
- Ant colony optimization
- Group recommender systems
- Group tour trip design problem
- Personalized tour trips