TY - JOUR
T1 - A negative index nonagonal csrr metamaterial-based compact flexible planar monopole antenna for ultrawideband applications using viscose-wool felt
AU - Hossain, Kabir
AU - Sabapathy, Thennarasan
AU - Jusoh, Muzammil
AU - Abdelghany, Mahmoud A.
AU - Soh, Ping Jack
AU - Osman, Mohamed Nasrun
AU - Yasin, Mohd Najib Mohd
AU - Rahim, Hasliza A.
AU - Al-Bawri, Samir Salem
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/8/2
Y1 - 2021/8/2
N2 - In this paper, a compact textile ultrawideband (UWB) planar monopole antenna loaded with a metamaterial unit cell array (MTMUCA) structure with epsilon-negative (ENG) and near-zero refractive index (NZRI) properties is proposed. The proposed MTMUCA was constructed based on a combination of a rectangular-and a nonagonal-shaped unit cell. The size of the antenna was 0.825 λ0 × 0.75 λ0 × 0.075 λ0, whereas each MTMUCA was sized at 0.312λ0 × 0.312λ0, with respect to a free space wavelength of 7.5 GHz. The antenna was fabricated using viscose-wool felt due to its strong metal–polymer adhesion. A naturally available polymer, wool, and a human-made poly-mer, viscose, that was derived from regenerated cellulose fiber were used in the manufacturing of the adopted viscose-wool felt. The MTMUCA exhibits the characteristics of ENG, with a bandwidth (BW) of 11.68 GHz and an NZRI BW of 8.5 GHz. The MTMUCA was incorporated on the planar monopole to behave as a shunt LC resonator, and its working principles were described using an equivalent circuit. The results indicate a 10 dB impedance fractional bandwidth of 142% (from 2.55 to 15 GHz) in simulations, and 138.84% (from 2.63 to 14.57 GHz) in measurements obtained by the textile UWB antenna. A peak realized gain of 4.84 dBi and 4.4 dBi was achieved in simulations and measurements, respectively. A satisfactory agreement between simulations and experiments was achieved, indicating the potential of the proposed negative index metamaterial-based antenna for microwave applications.
AB - In this paper, a compact textile ultrawideband (UWB) planar monopole antenna loaded with a metamaterial unit cell array (MTMUCA) structure with epsilon-negative (ENG) and near-zero refractive index (NZRI) properties is proposed. The proposed MTMUCA was constructed based on a combination of a rectangular-and a nonagonal-shaped unit cell. The size of the antenna was 0.825 λ0 × 0.75 λ0 × 0.075 λ0, whereas each MTMUCA was sized at 0.312λ0 × 0.312λ0, with respect to a free space wavelength of 7.5 GHz. The antenna was fabricated using viscose-wool felt due to its strong metal–polymer adhesion. A naturally available polymer, wool, and a human-made poly-mer, viscose, that was derived from regenerated cellulose fiber were used in the manufacturing of the adopted viscose-wool felt. The MTMUCA exhibits the characteristics of ENG, with a bandwidth (BW) of 11.68 GHz and an NZRI BW of 8.5 GHz. The MTMUCA was incorporated on the planar monopole to behave as a shunt LC resonator, and its working principles were described using an equivalent circuit. The results indicate a 10 dB impedance fractional bandwidth of 142% (from 2.55 to 15 GHz) in simulations, and 138.84% (from 2.63 to 14.57 GHz) in measurements obtained by the textile UWB antenna. A peak realized gain of 4.84 dBi and 4.4 dBi was achieved in simulations and measurements, respectively. A satisfactory agreement between simulations and experiments was achieved, indicating the potential of the proposed negative index metamaterial-based antenna for microwave applications.
KW - High-performance textiles
KW - Metamaterials
KW - Polymer
KW - Textile antennas
KW - Wearable antenna
UR - http://www.scopus.com/inward/record.url?scp=85113776249&partnerID=8YFLogxK
U2 - 10.3390/polym13162819
DO - 10.3390/polym13162819
M3 - Article
AN - SCOPUS:85113776249
SN - 2073-4360
VL - 13
JO - Polymers
JF - Polymers
IS - 16
M1 - 2819
ER -