TY - JOUR
T1 - A Blockchain-Based Deep-Learning-Driven Architecture for Quality Routing in Wireless Sensor Networks
AU - Khan, Zahoor Ali
AU - Amjad, Sana
AU - Ahmed, Farwa
AU - Almasoud, Abdullah M.
AU - Imran, Muhammad
AU - Javaid, Nadeem
N1 - Publisher Copyright:
© 2013 IEEE.
PY - 2023
Y1 - 2023
N2 - Over the past few years, great importance has been given to wireless sensor networks (WSNs) as they play a significant role in facilitating the world with daily life services like healthcare, military, social products, etc. However, heterogeneous nature of WSNs makes them prone to various attacks, which results in low throughput, and high network delay and high energy consumption. In the WSNs, routing is performed using different routing protocols like low-energy adaptive clustering hierarchy (LEACH), heterogeneous gateway-based energy-aware multi-hop routing (HMGEAR), etc. In such protocols, some nodes in the network may perform malicious activities. Therefore, four deep learning (DL) techniques and a real-time message content validation (RMCV) scheme based on blockchain are used in the proposed network for the detection of malicious nodes (MNs). Moreover, to analyse the routing data in the WSN, DL models are trained on a state-of-the-art dataset generated from LEACH, known as WSN-DS 2016. The WSN contains three types of nodes: sensor nodes, cluster heads (CHs) and the base station (BS). The CHs after aggregating the data received from the sensor nodes, send it towards the BS. Furthermore, to overcome the single point of failure issue, a decentralized blockchain is deployed on CHs and BS. Additionally, MNs are removed from the network using RMCV and DL techniques. Moreover, legitimate nodes (LNs) are registered in the blockchain network using proof-of-authority consensus protocol. The protocol outperforms proof-of-work in terms of computational cost. Later, routing is performed between the LNs using different routing protocols and the results are compared with original LEACH and HMGEAR protocols. The results show that the accuracy of GRU is 97%, LSTM is 96%, CNN is 92% and ANN is 90%. Throughput, delay and the death of the first node are computed for LEACH, LEACH with DL, LEACH with RMCV, HMGEAR, HMGEAR with DL and HMGEAR with RMCV. Moreover, Oyente is used to perform the formal security analysis of the designed smart contract. The analysis shows that blockchain network is resilient against vulnerabilities.
AB - Over the past few years, great importance has been given to wireless sensor networks (WSNs) as they play a significant role in facilitating the world with daily life services like healthcare, military, social products, etc. However, heterogeneous nature of WSNs makes them prone to various attacks, which results in low throughput, and high network delay and high energy consumption. In the WSNs, routing is performed using different routing protocols like low-energy adaptive clustering hierarchy (LEACH), heterogeneous gateway-based energy-aware multi-hop routing (HMGEAR), etc. In such protocols, some nodes in the network may perform malicious activities. Therefore, four deep learning (DL) techniques and a real-time message content validation (RMCV) scheme based on blockchain are used in the proposed network for the detection of malicious nodes (MNs). Moreover, to analyse the routing data in the WSN, DL models are trained on a state-of-the-art dataset generated from LEACH, known as WSN-DS 2016. The WSN contains three types of nodes: sensor nodes, cluster heads (CHs) and the base station (BS). The CHs after aggregating the data received from the sensor nodes, send it towards the BS. Furthermore, to overcome the single point of failure issue, a decentralized blockchain is deployed on CHs and BS. Additionally, MNs are removed from the network using RMCV and DL techniques. Moreover, legitimate nodes (LNs) are registered in the blockchain network using proof-of-authority consensus protocol. The protocol outperforms proof-of-work in terms of computational cost. Later, routing is performed between the LNs using different routing protocols and the results are compared with original LEACH and HMGEAR protocols. The results show that the accuracy of GRU is 97%, LSTM is 96%, CNN is 92% and ANN is 90%. Throughput, delay and the death of the first node are computed for LEACH, LEACH with DL, LEACH with RMCV, HMGEAR, HMGEAR with DL and HMGEAR with RMCV. Moreover, Oyente is used to perform the formal security analysis of the designed smart contract. The analysis shows that blockchain network is resilient against vulnerabilities.
KW - ANN
KW - blockchain
KW - CNN
KW - GRU
KW - HMGEAR
KW - LEACH
KW - LSTM
KW - malicious nodes detection
UR - http://www.scopus.com/inward/record.url?scp=85151511306&partnerID=8YFLogxK
U2 - 10.1109/ACCESS.2023.3259982
DO - 10.1109/ACCESS.2023.3259982
M3 - Article
AN - SCOPUS:85151511306
SN - 2169-3536
VL - 11
SP - 31036
EP - 31051
JO - IEEE Access
JF - IEEE Access
ER -